Notes: Show your work. In other words, just writing the answer, even if correct, may not be sufficient for full credit. Scientific calculators are allowed, but no programmable and/or graphing calculators. And please put away your cell phones and other electronic devices, turned off or in airplane mode.

Your Name: Solutions

Problem 1: out of 20
Problem 2: out of 20
Problem 3: out of 20
Problem 4: out of 20
Problem 5: out of 20
Total: out of 100

Good luck and have a great Memorial Day Weekend!
1. (20 points) In this problem, let the curve C be the boundary of the square with vertices $(-1,0)$, $(0,1)$, $(1,0)$ and $(0,-1)$, oriented counterclockwise.

(a) (6 points) Evaluate

$$
\int_C ds = \text{length of the curve} = 4\sqrt{2}.
$$

(b) (7 points) Evaluate

$$
\int_C -y\,dx + x\,dy = \text{twice the area of the region (Green's Theorem)} = 4.
$$

(c) (7 points) Evaluate

$$
\int_C 2xy\,dx + x^2\,dy = 0
$$

Since if $f = x^2y$, then $\nabla f = (2xy, x^2)$ and thus the integral vanishes.
2. (20 points) Let \(\vec{F} = (-y, x, z) \). Evaluate

\[
\int_C \vec{F} \cdot d\vec{s}
\]

where the curve \(C \) is the quarter circle of radius \(\sqrt{2} \) centered at the origin, starting at the point \(P(1, 1, 0) \) and ending at the point \(Q(0, 0, \sqrt{2}) \).

Use \(\vec{C}(t) = (\cos t, \cos t, \sqrt{2} \sin t) \), \(0 \leq t \leq \frac{\pi}{2} \)

to parametrize the curve.

This works since the curve can be described as the intersection of the sphere \(x^2 + y^2 + z^2 = 2 \)

with the plane \(y = x \), and \(\vec{C}(t) \) checks both equations and preserves orientation.

Now \(\vec{C}'(t) = (-\sin t, -\sin t, \sqrt{2} \cos t) \) and

\[
\int_C \vec{F} \cdot \vec{d}s = \int_0^{\pi/2} \vec{F} \cdot \vec{C}'(t) dt = 0
\]

\[
= \int_0^{\pi/2} \sin t \cos t - \sin t \cos t + 2 \sin t \cos t dt
\]

\[
= \int_0^{\pi/2} \sin 2t dt = -\frac{1}{2} \cos 2t \bigg|_0^{\pi/2} = \frac{1}{2} + \frac{1}{2} = 1
\]
3. (20 points) Let \(\Phi(u, v) = (u \cos v, u \sin v, u^2) \) be a mapping from a subset \(D \subseteq \mathbb{R}^2 \) given by \(0 \leq u \leq 3, 0 \leq v \leq 2\pi \) onto a surface \(S = \Phi(D) \) in \(\mathbb{R}^3 \).

(a) (5 points) Sketch or describe (identify) this surface.

\[z = x^2 + y^2 \quad \text{where} \quad z \leq 3 \quad \text{(and} \quad z > 0 \text{).} \]

(b) (15 points) Find the surface area of \(S \).

\[\vec{T}_u = (\cos v, \sin v, 2u) \]
\[\vec{T}_v = (-u \sin v, u \cos v, 0) \]

\[\vec{T}_u \times \vec{T}_v = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ \cos v & \sin v & 2u \\ -u \sin v & u \cos v & 0 \end{vmatrix} = (-2u^2 \cos v, 2u^2 \sin v, u) \]

\[||\vec{T}_u \times \vec{T}_v|| = \sqrt{4u^4 \cos^2 v + 4u^4 \sin^2 v + u^2} = \sqrt{u^2 (4u^2 + 1)} = u \sqrt{4u^2 + 1} \]

\[A(S) = \iint_S dS = \iint_{D} ||\vec{T}_u \times \vec{T}_v|| \, dudv = \iint_{0}^{2\pi} \iint_{0}^{3} u \sqrt{4u^2 + 1} \, du \, dv \]

\[= \frac{1}{8} \int_{0}^{2\pi} \int_{0}^{3} 8u \sqrt{4u^2 + 1} \, du \]

\[= \frac{2\pi}{8} \cdot \left[\frac{2}{3} (4u^2 + 1)^{3/2} \right]_{0}^{3} \]

\[= \frac{2\pi}{6} \left(\frac{2}{3} 3^{3/2} - \frac{2}{3} \right) = \frac{\pi}{6} (3^{3/2} - 1) \]
4. (20 points) Let the surface \(S \) be the portion of the cone \(z^2 = x^2 + y^2 \) where \(1 \leq z \leq 4 \). Let \(f(x, y, z) = y + z^3 \). Evaluate

\[
\iiint_S f \, dS
\]

Use \(\Phi(u, v) = (u \cos v, u \sin v, u) \) with \(0 \leq v \leq 2\pi, \ 1 \leq u \leq 4 \), to parameterize \(S \).

\[
\begin{align*}
\mathbf{T}_u &= (\cos v, \sin v, 1) \\
\mathbf{T}_v &= (-u \sin v, u \cos v, 0)
\end{align*}
\]

\[
\mathbf{T}_u \times \mathbf{T}_v = \begin{vmatrix}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\cos v & \sin v & 1 \\
-u \sin v & u \cos v & 0
\end{vmatrix} = (-u \cos v, -u \sin v, u)
\]

\[
|\mathbf{T}_u \times \mathbf{T}_v| = \sqrt{u^2 \cos^2 v + u^2 \sin^2 v + u^2} = \sqrt{2u^2} = u\sqrt{2}
\]

\[
\int_0^{2\pi} \int_1^4 f(u, v) |\mathbf{T}_u \times \mathbf{T}_v| \, du \, dv = \int_0^{2\pi} \int_1^4 (u \sin v + u^3) u \sqrt{2} \, du \, dv
\]

\[
= \sqrt{2} \int_0^{2\pi} \left[\frac{u^4}{4} \right]_1^4 + \frac{u^4}{5} \left[\frac{u^5}{5} \right]_1^4 \, dv
\]

\[
= \sqrt{2} \int_0^{2\pi} \left(\frac{256}{4} - \frac{1}{4} \right) + \frac{1024}{5} \left(\frac{1024}{5} - \frac{1}{5} \right) \, dv
\]

\[
= \frac{2\sqrt{2}}{5} [1023](11)
\]
5. (20 points) Let \(\vec{F} = (x, -z, y) \) and \(S \) be the closed upper hemisphere centered at the origin of radius 3, with the orientation given by the outer normal (i.e. pointing out of the hemisphere). In other words, \(S \) is the surface enclosed by the portion of the sphere \(x^2 + y^2 + z^2 = 9 \) where \(z \geq 0 \) and the disk \(x^2 + y^2 \leq 9 \) where \(z = 0 \). Evaluate

\[
\iint_S \vec{F} \cdot d\vec{S}
\]

(a) \(\iint_{S_1} \vec{F} \cdot d\vec{S} = \frac{1}{3} \iint_S (x - z, y) \cdot (x, y, z) \, dS = \frac{1}{3} \iint_{S_1} x^2 - z^2 + y \, dS \)

\[
= \frac{1}{3} \iint_{S_1} x^2 \, dS. \text{ Using symmetry we get } x^2 + y^2 + z^2 \text{ on the whole sphere}
\]

\[
= \frac{1}{3} \iint_{S_1} x^2 \, dS = \frac{1}{3} \iint \frac{x^2}{R^2} \, dS = \frac{1}{3} \iint \frac{R^2}{9} \, dS = \frac{1}{9} \iint R^2 \, dS = \frac{4}{9} R^2 = \frac{4}{9} \cdot 9 = \frac{36}{9} \lll \frac{18\pi}{3}
\]

(b) \(\iint_{S_2} \vec{F} \cdot d\vec{S} = \iint_S (x - z, y) \cdot (0, 0, -1) \, dS = \iint_{S_2} -y \, dS \)

\[
= \int \int_{S_2} -r \sin \theta \, r \, dr \, d\theta = \int_0^{2\pi} \sin \theta \, d\theta \int_0^3 r^2 \, dr = 0
\]

\[
\iint_S \vec{F} \cdot d\vec{S} = \frac{18\pi}{3}
\]