Problem 8: For the sake of a contradiction, let
\[A = \{ y \mid y = \{ x \} \text{ for some set } x \} \]
be a set. Then using the pairing axiom with \(A \) and \(A \), \(\{ A, A \} = \{ A \} \) is also a set. Then \(U \{ A \} = \{ x \mid y \in A \} = \{ x \mid x \text{ is a set} \} \)
but this is not a set. \(\square \).

Problem 9: Let \(A = \{ \emptyset \} \) \(B = \{ \{ \emptyset \} \} \). So \(A \in B \). But
\[Pa = \{ \emptyset, \{ \emptyset \} \} \text{ and } PB = \{ \{ \{ \emptyset \} \}, \emptyset \} \]
and clearly \(Pa \notin PB \).
#7) This is done by induction. Assume \(h_1 \) and \(h_2 \) are functions that satisfy the conclusion of the recursion theorem. Let \(S = \{ n \in \mathbb{N} \mid h_1(n) = h_2(n) \} \). It suffices to show \(S \) is inductive. Since both \(h_1 \) and \(h_2 \) are acceptable, \(0 \in S \).

Now assume \(n \in S \) and consider:

\[
\begin{align*}
 h_1(n^+) &= F(h_1(n)) \quad \text{since } h_1(n) = h_2(n) \\
 h_2(n^+) &= F(h_2(n))
\end{align*}
\]

It follows that \(h_1(n^+) = h_2(n^+) \), so \(n^+ \in S \). \(\square \)

#8) The idea here is that if \(h(n^+) = h(m^+) \) and \(n^+ \neq m^+ \), then \(f^{(m)}(0^+) = f^{(m)}(0^+) \) and if \(m < n \) say, \(f^{(n-m)}(0) = 0 \), which contradicts \(c \notin \text{ran}(f) \).

Double since \(f \) is one-to-one.

To do this in our setup, we use induction.

Let \(S = \{ n \in \mathbb{N} \mid \forall m \in \mathbb{N}, \ h(n) = h(m) \rightarrow n = m \} \).

B.C. \(0 \in S \).

Assume \(0 \neq 0 \). Then \(m = \rho^+ \) for some \(\rho \).

So \(h(\rho^+) = h(0) \) but \(h(\rho^+) = f(h(\rho)) \) so \(c \notin \text{ran}(f) \) \(\uparrow \)

Therefore \(0 \in S \).
Ind. Step: Assume \(n \in S \), show \(n^+ \in S \).

Again assume \(h(n^+) = h(m) \). By the above

\[m \neq 0 \text{ so } m = p^+ \text{ for some } p. \]

So

\[h(n^+) = h(p^+) \]

So

\[f(h(n)) = f(h(p)) \]

Since \(f \) is 1-1

\[h(n) = h(p) \]

Since \(n \in S \), \(n = p \) and hence \(n^+ = p^+ \).

So

\[n^+ \in S \]

\[\square \]

Problem 13:

Assume \(m \cdot n = 0 \) show \(m = 0 \) or \(n = 0 \).

Contrapositive: Assume \(m \neq 0 \), \(n \neq 0 \) show \(m \cdot n \neq 0 \).

\[m \neq 0 \implies k^+ = m^+ \text{ for some } k \in \mathbb{W}. \]

\[n \neq 0 \implies l^+ = n^+ \text{ for some } l \in \mathbb{W}. \]

\[l^+ \cdot k^+ = \frac{M_2}{A_2} \]

\[\Delta_2 \]

\[(l^+ \cdot k + l)^+ \]

\[\neq 0 \]

Since \(0 \neq r^+ \) for any \(r \) and

\[l^+ \cdot k + l \in \mathbb{W} \]

Since \(0^+ \), \(1^+ \) are total functions.
Problem 14:

Set \(S = \{ n \in \mathbb{N} \mid n \) is either even or odd but not both \(3 \}. \)

Base Case: \(n = 0 \)

\[0 = 2 \cdot 0 \] by M1, so \(0 \) is even.

Assume that \(0 = 2k + 1 \)

\[2k = 2k + 0 \]

\[= (2k+0)^+ \]

so \(0 \) is not odd, so \(0 \in S. \)

Induction Step: Assume \(n \) is either even or odd but not both. Show same for \(n^+ \).

Case 1: \(n \) is even.

\[n = 2 \cdot k \]

\[\Rightarrow n^+ = (2k)^+ \]

\[= (2k+0)^+ \]

\[= 2k + 0^+ \]

\[= 2k + 1 \]

so \(n^+ \) is odd

Case 2: \(n \) is odd

\[n = 2k + 1 \]

\[n^+ = (2k+1)^+ \]

\[= 2k + 1^+ \]

\[= 2k + 2 \]

\[= 2(k+1) \]

\[\Rightarrow = 2k^+ \]

so \(n^+ \) is even.
14 cont'd:
Now if \(n^+ \) is both even and odd, it is
done that the above steps can be reversed to show
that \(n \) is both even and odd, which contradicts \(n \in S \). Therefore \(n^+ \in S \), \(S \) is inductive.

Problem 20: Clearly if \(0 \notin A \) and \(A \neq \emptyset \), then since \(0 \in m^+ \) in \(0 \in cUA \) and \(A \neq \emptyset \).

Now let \(\tilde{n} \) be the least \(m \in A \) s.t. \(n^+ \notin A \). Such an
it must exist unless \(A = \omega \) since \(A \neq \emptyset \). (assuming \(0 \in A \))

Assume \(A \neq \omega \) and consider this \(\tilde{n} \):

Case 1: \(\tilde{n} \) is the largest \(m \in A \).
Then \(\tilde{n} \in A \) but \(UA = \{ m \mid m \in \tilde{n} \} \)
so \(UA \neq A \).

Case 2: \(\tilde{n} \) is not the largest. But \(\tilde{n}^+ \notin A \), so let
\(m \in A \) s.t. \(m \leq \tilde{n} \).
Clearly \(\tilde{n}^+ \in UA \) but \(\tilde{n}^+ \notin A \) so
in either case \(UA \neq A \).

Now if \(A = \omega \), then since \(A \) is transitive, \(UA \leq A \).
But given \(m \in \omega \), \(m \in m^+ \in A \), so \(m \in UA \).
Therefore \(U \omega = \omega \).
Math 161, Homework #2, Solutions, Page 5

Problem 26: By induction: \[S = \{ n \in \mathbb{N} \mid \forall f: n^+ \to \omega \text{ has a largest} \} \]
\[n = 0 \text{ if } 0 \to n \text{ largest is } f(0) \text{ since it's the sole member of ran } f \]
\[\text{Consider } f \cap n^+ \text{ By I.H. } f \cap n^+ \text{ has largest output, say } q \in \omega. \]
\[\text{Case 1: } f(n^+) \leq q. \text{ Then } q \text{ is largest in ran } f \]
\[2: \quad f(n^+) > q. \text{ Then } f(n^+) \text{ is largest in ran } f. \]
By trichotomy these are the only cases to consider. \(\square \).
So \(n^+ \in S, S \) is inductive.

Problem 32:
(a) \(A = \{ 1 \} \quad A^+ = \{ 1 \} \cup \{ 1, 1 \} = \{ 1, 1 \} \quad (b) \ U (\{ 23^+ \}) \]
\[U A^+ = \{ 0 \} = \{ 0, 1, 2 \} \]

Problem 33:
(a) Transitive
(b) not transitive, 0 is missing
(c) \(0 \cup 1 = \{ 0, 1 \} \quad 0 \) is missing

Problem 34:
(a) \(a = \emptyset, b = \emptyset \) will do
(b) \(c = \{ \emptyset \}, d = \{ \emptyset \}, e = \emptyset \) will do.