Problem 1:
Let \(A_n = \left\{ -n^3, n \left(\frac{1}{n}, \frac{3n^2 - 1}{n} \right) \right\} \). Find \(\bigcap_{\text{new}} A_n \) and \(\bigcup_{\text{new}} A_n \). Justify your answers.

Problem 2: Given a family \(\{ R_t \}_{t \in T} \) of equivalence relations in a set \(X \), check if
\(R_1 = \bigcap_{t \in T} R_t \) is an equivalence relation.
\(R_2 = \bigcup_{t \in T} R_t \) is an equivalence relation.

Problem 3: Let \(a > 0 \). Show that \(\sum_{k=1}^{n} \frac{1}{(a+k-1)(a+k)} = \frac{n}{a(a+n)} \).

Problem 4: Find and prove a formula for
\(\frac{1}{(i(i+1))} \).

Problem 5: Let \(f : A \to A \) be defined by \(f(a) = a^2 + 1 \).
(a) If \(A = \mathbb{N} \), is \(f \) a surjection? injection?
(b) If \(A = \mathbb{Z} \), is \(f \) a surjection? injection?

Problem 6: Let \(g : A \to B \) and \(f : B \to C \). Prove that if \(f \) and \(g \) are one-to-one, then \(f \circ g \) is one-to-one. Find an example of \(f \) and \(g \) such that \(f \circ g \) is one-to-one, but \(f \) is not one-to-one.

Problem 7: Show that \(\frac{(2n)!}{(n!)^2} \) is an even integer for all \(n \in \mathbb{N} \).
Problem 8: Give a combinatorial (sic a counting argument) and a direct proof of
\[C(n,k) = C(n, n-k) \quad \text{or} \quad \binom{n}{k} = \binom{n}{n-k} \]
where \(k, n \in \mathbb{N}, \ 0 \leq k \leq n \).

Problem 9: Let \(f_i : A_i \rightarrow \mathbb{Z} \) be defined by
\[f_i(x) = \prod_{j \in I_i} (x - j) \] for which \(i \in \{1, 2, 3\} \)
As \(f_1(x) = x_{A_1}(x) \) given that \(A_1 = \mathbb{R}, A_2 = \mathbb{R} - \mathbb{N}, A_3 = \mathbb{R} - \mathbb{Z} \).
For more \(i \) where \(f_i(x) \neq x_{A_i}(x) \) find \(B_i \) such that \(f_i(x) = x_{B_i}(x) \).

Problem 10: Use the Schroeder-Bernstein Theorem to show that \((0,1)\) and \(\mathbb{R}\) have the same cardinality.

Problem 11: Let \(n \in \mathbb{N} \), \(n \) not a prime. Show that
\[(n-1)! \equiv 0 \pmod{n} \quad \text{for} \ n \neq 4 \]

Problem 12: Let \(f : \mathbb{N}^2 \rightarrow \mathbb{N} \) be defined by
\[f(x,y) = x^2 + y^2 . \]
Find \(f^{-1}(405), f^{-1}(193), f^{-1}(253) \).

Problem 13: What is the cardinality of \(\{ x \in \mathbb{R} : \exists n \in \mathbb{N} (x^n \in \mathbb{Z}) \} ? \)

Problem 14: Let \(P \) be the set of all formulas of the propositional calculus. Define a relation \(\sim \) on formulas \(\Phi \) from \(P \) as follows
\[\Phi_1 \sim \Phi_2 \iff \Phi_1 \equiv \Phi_2 \text{ is a tautology} . \]
Problem 14 continued
(a) Prove that \(\sim \) is an equivalence.
(b) What formulas belong to \([AJ]\) where
\(A \) is the formula \(\neg (p \land q) \)
(c) What formulas belong to \([BJ]\) where
\(B \) is the formula \(\neg (p \lor q) \)

Problem 15: Prove that the mapping
\(f: \mathbb{N}_0 \times \mathbb{N}_0 \to \mathbb{N}_0 \)
defined by \(f(x,y) = 2^x (2y+1)-1 \) is a bijection.
Conclude that \(\text{card} (\mathbb{N}_0 \times \mathbb{N}_0) = \text{card} (\mathbb{N}) \).

Problem 16: Construct a mapping \(f: (0,1) \to \mathbb{N} \) such that
\(f \) is onto and \(\forall n \in \mathbb{N} \) \(\text{card} (f^{-1}(\{n\})) = \text{card}(\mathbb{R}) \).
In other words, construct \(f \) so that the pre-image of any natural number has the cardinality of the continuum.

Problem 17: As \#16, but construct \(f \) so that the pre-image of an even integer has the cardinality of the continuum and the pre-image of an odd integer has cardinality 1.

Problem 18: Prove or disprove. Let \(A, B \) be sets
(a) \(A \cup (A \cap B) = A \) (b) \(A \cap (A \cup B) = B \)

Problem 19: Prove that \(\forall \in \mathbb{N} \)
\[\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6} \]

Problem 20: Is \((p \rightarrow q) \leftrightarrow [(p \land q) \leftrightarrow p] \) a tautology?